Math 241 Winter 2024 Lecture 13

Feb 19-8:47 AM

Class QZ 10
find the measure of both angles if

$$
\begin{aligned}
\frac{1}{2} x+\frac{1}{3} x & =90 \\
\text { LCD } & =6 \\
3 x+2 x & =6 \cdot 90 \\
5 x & =6 \cdot 90 \quad x=108 \\
x & =\frac{6 \cdot 90}{5}
\end{aligned}
$$

$$
\frac{1}{2}(108)=54^{\circ}
$$

$$
\frac{1}{3}(108)=36^{\circ}
$$

```
verify
\[
\tan \left(x-45^{\circ}\right)+\tan \left(x+45^{\circ}\right)=2 \tan 2 x
\]
\[
\text { Recall } \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
\]
\[
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
\]
\[
L_{H S}=\frac{\tan x-\tan 45^{\circ}}{1+\tan x \tan 45^{\circ}}+\frac{\tan x+\tan 45^{\circ}}{1-\tan x \tan 45^{\circ}}
\]
\[
=\frac{\tan x-1}{1+\tan x}+\frac{\tan x+1}{1-\tan x}
\]
\[
\frac{(\tan x-1)(1-\tan x)+(\tan x+1)(1+\tan x)}{(1+\tan x)(1-\tan x)}
\]
\[
=\frac{\tan x-\tan ^{2} x-1+\tan x+\tan x+\tan ^{2} x+1+\tan x}{(1+\tan x)(1-\tan x)}
\]
\[
=\frac{4 \tan x}{1-\tan ^{2} x}=\frac{2 \cdot 2 \tan x}{1-\tan ^{2} x}
\]
\[
=2 \cdot\left\{\frac{\tan x+\tan x}{1-\tan x \cdot \tan x}\right\}
\]
\[
=2 \cdot \tan (x+x)
\]
\[
=2 \tan 2 x
\]
```

Jan 24-8:05 AM
write $2 \cos 85^{\circ} \sin 140^{\circ}$ as sum or difference of two functions.

$$
\left.\begin{array}{l}
2 \cos 85^{\circ} \sin 140^{\circ}=2 \cdot \frac{1}{2}\left[\sin \left(85^{\circ}+140^{\circ}\right)-\sin \left(85^{\circ}-140^{\circ}\right)\right] \\
\cos A \sin B=\frac{1}{2}[\sin (A+B)-\sin (A-B)] \\
\end{array}=\sin \left(225^{\circ}\right)-\sin \left(-55^{\circ}\right)\right] \quad \begin{aligned}
& \operatorname{Recall} \\
& \sin (-\alpha)=-\sin \alpha \quad=\sin 225^{\circ} \ldots-\sin 55^{\circ} \\
& 225^{\circ}=180^{\circ}+45^{\circ} \quad
\end{aligned}
$$

$\sin 225^{\circ}=\sin \left(180^{\circ}+45^{\circ}\right)$
$=\sin 180^{\circ} \cos 45^{\circ}+\cos 180^{\circ} \sin 45^{\circ}$ $=-\frac{\sqrt{2}}{2}$

Write $\operatorname{Cos} 4 x+\cos 8 x$ as the product of two trig. functions.

$$
\begin{aligned}
\operatorname{Cos} 4 x+\cos 8 x & =2 \cos \frac{4 x+8 x}{2} \cos \frac{4 x-8 x}{2} \\
\operatorname{Cos} A+\cos B & =2 \cos \frac{A+B}{2} \cdot \cos \frac{A-B}{2} \\
\text { Recall } & =2 \cos 6 x \cos (-2 x) \\
\operatorname{Cos}(-\alpha)=\cos \alpha & =2 \cos 6 x \cos 2 x
\end{aligned}
$$

find $\tan 2 \theta$ if $\cos \theta=\frac{\sqrt{3}}{5}$ and $\sin \theta>0$

$$
\begin{aligned}
& 0^{\circ}<\theta<90^{\circ} \\
& 0^{\circ}<2 \theta<180^{\circ} \\
& \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{\frac{2 \sqrt{22}}{\sqrt{3}}}{1-\left(\frac{\sqrt{22}}{\sqrt{3})^{2}}\right.} \\
& =\frac{\frac{2 \sqrt{22}}{\sqrt{3}}}{1-\frac{22}{3}}=\frac{\frac{2 \sqrt{66}}{3}}{1-\frac{22}{3}} \\
& =\frac{2 \sqrt{66}}{3-22}=\frac{2 \sqrt{66}}{-19} \quad \begin{array}{l}
\text { LCD }=3
\end{array} \\
& \tan 2 \theta=\frac{-2 \sqrt{66}}{19} \quad \Rightarrow \text { what quadrant } 2 \theta \text { is } \\
& 0^{\circ}<2 \theta<180^{\circ} \quad \text { located in? }
\end{aligned}
$$

QII

Class QZ 11
The central angle of a circular Sector on a Circle with radius 8 in has a measure of 4 radians.

1) Draw Éclearly label.
2) find its are length
3) find its area.

$$
\begin{aligned}
& S=r \theta=8 \cdot 4=32 \text { in } \\
& A=\frac{1}{2} r^{2} \theta=\frac{1}{2}(8)^{2} \cdot 4=128 \mathrm{in}^{2}
\end{aligned}
$$

Linear Speed
How fast an object

Angular Speed
How fast an angle moves per time

$$
\begin{aligned}
& \text { Speed }=d \\
& V=\frac{d}{t}
\end{aligned}
$$

Linear Speed
we know

$$
\begin{gathered}
v=\frac{r \theta}{t}=r \omega \\
v=\frac{s}{t} \quad w=\frac{\theta}{t} \quad v=r w
\end{gathered}
$$

Jan 24-9:16 AM

Suppose P is on a Circle with radius 10 cm The angular speed is $\frac{\pi}{18}$ Radian $/ \mathrm{sec}$.

$$
\begin{aligned}
& r=10 \mathrm{~cm} \\
& w=\frac{\pi}{18}
\end{aligned}
$$

Find the angle generated in 6 Seconds. every Second $\frac{\pi}{18}$
in 6 Seconds $\rightarrow 6 \cdot \frac{\pi}{18}=\frac{\pi}{3}$ Rad.

$$
\begin{aligned}
& \qquad \omega=\frac{\theta}{t} \quad \frac{\pi}{18}= \\
& \text { find the distance trave } \\
& P \text { in } 6 \text { Seconds. } \\
& \text { ar s } \\
& \text { trave distance }
\end{aligned}
$$

$$
18 \theta=6 \pi
$$

led by

$$
\theta=\frac{6 \pi}{18}=\frac{\pi}{3}
$$

find its linear speed $\frac{v=\frac{s}{t}}{v e c o n d}$

$$
\begin{aligned}
V & =\frac{g}{t} \\
& =\frac{10 \pi}{6} \\
6 & \frac{5 \pi}{9} \mathrm{~cm} / \mathrm{sec} .
\end{aligned}
$$

$$
\begin{aligned}
s & =r \theta \\
& =10 \cdot \frac{\pi}{3}=\frac{10 \pi}{3} \mathrm{~cm}
\end{aligned}
$$

P in 6 Seconds.
Cross-multiply

$$
\text { led by } 18 \text { Ie }
$$

find the distance traveled by $\theta=\frac{6 \pi}{18}=\frac{\pi}{3}$

$$
\begin{aligned}
& \frac{10 \pi}{3} \div 6= \\
& \frac{56 \pi}{3} \cdot \frac{1}{6}
\end{aligned}
$$

Given $r=20 \mathrm{in}$.

$$
\begin{aligned}
& \omega=\frac{\pi}{12} \mathrm{Rad} . \mathrm{min} . \\
& t=6 \mathrm{~min}
\end{aligned}
$$

1) Find the angle generated by point P int.
2) Find the distance traveled by P along the circle in time t.
3) find the linear speed in in $/ \mathrm{min}$.

$$
\left.\begin{array}{ll}
\frac{\pi}{12} \cdot 6=\frac{\pi}{2} \text { Rad. } & \omega=\frac{\theta}{t} \\
\frac{\pi}{12}=\frac{\theta}{6}
\end{array}\right\} \theta=\frac{\pi}{2}
$$

$$
S=r \theta
$$

$$
=20 \cdot \frac{\pi}{2}=10 \pi \mathrm{in}
$$

$$
V=\frac{S}{t}=\frac{10 \pi}{6}=\frac{5 \pi}{3} \mathrm{in} / \mathrm{min} .
$$

$$
\begin{aligned}
& \text { The tires on a bike are circular with } \\
& \text { radius } 13.0 \mathrm{in.} \mathrm{Tires} \mathrm{are} \mathrm{turning} 215 \\
& \text { How fast is the bike } \quad r=13.0 \mathrm{in} \text {. } \\
& \text { traveling in miles Per hour? Linear speed } \\
& 1 \mathrm{hr}=60 \mathrm{~min} \text {. } \\
& 1 \text { mile }=5280 \mathrm{ft}=5280 \cdot 12 \mathrm{in} \text {. } \\
& v=\frac{S}{t} \\
& \omega=\frac{\theta}{t} \\
& v=13.0 \text { in. } \frac{430 \pi}{1 \mathrm{~min} .}=\quad \text { Miles } / \mathrm{hr} . \mathrm{V}=r \omega \\
& =13.0 \mathrm{ik} \cdot \frac{430 \pi}{\operatorname{Min}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{1 \mathrm{~m}}{12 \cdot 5880 \mathrm{in}} \frac{1 \mathrm{hr}=60 \mathrm{mins}}{1 \mathrm{mile}=5280 \cdot 12 \mathrm{in}} \\
& =\frac{13.0 \cdot 430 \pi \cdot 60}{12.5280} \text { miles } / \mathrm{hr} \\
& \approx 16.6 \mathrm{mph}
\end{aligned}
$$

The pulley shown below has a radius of 12.96 cm . It takes 18 seconds for 56 cm of a beltaround the pulley.

Belt is making the pulley to go around. $t=18$ Seconds $S=56 \mathrm{~cm}$.
find linear speed in $\mathrm{Cm} / \mathrm{sec}$.

$$
v=\frac{S}{t}=\frac{56}{18}=\frac{28}{9} \mathrm{~cm} / \mathrm{sec} . \approx 3.11 \mathrm{~cm} / \mathrm{sec}
$$

find its angular speed in radians/Sec. $\omega=\frac{\theta}{t}$ $v=r w$

$$
\frac{28}{9}=12.96 w
$$

$$
\begin{aligned}
w & =\frac{28 / 9}{12.96} \\
& \approx .24 \mathrm{Rad} . \mathrm{sec} .
\end{aligned}
$$

Jan 24-10:03 AM

Given

$$
\begin{aligned}
& r=30 \mathrm{~cm} \\
& \omega=\frac{\pi}{10} \mathrm{Rad} / \mathrm{sec} \\
& t=4 \mathrm{Sec} .
\end{aligned}
$$

1) find angle generated.

$$
\omega=\frac{\theta}{t} \quad \frac{\pi}{10}=\frac{\theta}{4} \quad \begin{array}{r}
\theta=\frac{2 \pi}{5} \\
\text { Rad. }
\end{array}
$$

2) Find distance traveled $S=r \theta=30 \cdot \frac{2 \pi}{5}=12 \pi \mathrm{~cm}$
3) find linear speed.

$$
v=\frac{S}{t}=\frac{12 \pi}{4}=3 \pi \mathrm{~cm} / \mathrm{sec}
$$

find angular speed of an object moving along a circk given $S=\frac{8 \pi}{9} m, r=\frac{4}{3} m$, in $t=12$ Seconds.

Consider the tip of the minute hand of a clock if the hand is 7 cm long.

$$
r=7 \mathrm{~cm}
$$

Find the linear speed of the tip of the minute hand

$$
w=\frac{\theta}{t}
$$ in Cm per min.

$$
v=\frac{s}{t}
$$

$$
v=r w
$$

$$
\begin{aligned}
V=r \omega & =7 \mathrm{~cm} \cdot \frac{\pi}{30} \mathrm{Rad} / \mathrm{min} . \quad \begin{array}{l}
2 \pi \mathrm{Rad} . \text { in } 60 \mathrm{~min} . \\
\\
\end{array}=\frac{7 \pi}{30} \mathrm{~cm} / \mathrm{min} .
\end{aligned} \quad \frac{2 \pi}{60}=\frac{\pi}{30} \mathrm{Rad} / \mathrm{min} .
$$

$$
\begin{aligned}
& \begin{array}{l}
t=12 \text { Seconds. } \\
v=\frac{S}{t} \rightarrow v=\frac{8 \pi}{9}=\frac{2}{12}=\frac{8 \pi}{1 / 3 \cdot 9}=\frac{2 \pi}{27}
\end{array} \\
& \omega=\frac{\theta}{t} \\
& v=r w \\
& \frac{2 \pi}{27}=\frac{4}{3} \omega
\end{aligned}
$$

$$
\begin{aligned}
& \text { Can you show that } \\
& s=r \omega t \text { ? } \\
& \frac{8 \pi}{9}=\frac{4}{8} \cdot w \cdot x^{4} \\
& v=\frac{s}{t} \\
& \frac{8 \pi}{9}=16 \omega \\
& \omega=\frac{\frac{8 \pi}{9}}{16}=\frac{8 \pi}{9 \cdot \frac{1 匕 2}{2}}=\frac{\pi}{18} \mathrm{Rod} / \mathrm{sec}
\end{aligned}
$$

A wheel has a radius of $2 m$ and it rotates 42 times per minute.

Find its linear speed.

$$
r=2 m
$$

$$
w=42 \cdot 2 \pi
$$

$$
\begin{array}{rl}
v=\frac{S}{t}, w=\frac{\theta}{t} v & v \omega \quad=84 \pi \mathrm{Rad} / \mathrm{min} \\
\mathrm{Rad} / \mathrm{min}
\end{array}
$$

Introducing DM S
Degree
Minute Portion of degree Second Portion of Minute

$$
1^{\circ}=60 \text { Minutes } \quad 1^{\circ}=60^{\circ}
$$

$$
1 \text { Minute }=60 \text { Seconds } 1^{\prime \prime}=60^{\prime \prime}
$$

Angle A is $32^{\circ} 15^{\prime} 20^{\prime \prime}$

$$
\begin{aligned}
& 32^{\circ} 15^{\prime} 20^{\prime \prime}=32+\frac{15}{60}+\frac{20}{3600} \approx 32.256^{\circ} \\
& \text { Convert } 72^{\circ} 8^{\prime} 14^{\prime \prime} \text { to degrees } \\
& 72+\frac{8}{60}+\frac{14}{3600} \approx 72.137^{\circ} \\
& \text { Convert } \left.85^{\circ} 30^{\circ}\right] 25^{\prime \prime} \text { to degrees } \\
& 85+\frac{30}{60}+\frac{25}{3600} \approx 85.507^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now reverse } \\
& \text { Convert } 40.125^{\circ} \text { to DMS } \\
& 40^{\circ} 7^{\prime} 30^{\prime \prime} \\
& t .125(60)=7.5^{\circ} \\
& .5(60=30 \\
& \text { Convert } 34.817^{\circ} \text { to DMS } \\
& =34+.817(60) \\
& =34+49.02 \\
& \\
& =34+49+(.02)(60) \\
& \\
& \approx 34^{\circ} 49^{\prime} 1^{\prime \prime} \\
& 50.525^{\circ} \text { to DMS } \\
& \text { Convert } \begin{aligned}
50.525 & =50^{\circ}+.525(60)^{\prime} \\
& =50^{\circ} 31.5^{\prime} \\
& =50^{\circ} 31^{\prime} 30^{\prime \prime}
\end{aligned}
\end{aligned}
$$

Jan 24-11:24 AM

$$
\begin{aligned}
& \text { Operations with DMS } \\
& A=25^{\circ} 42^{\prime} 50^{\prime \prime} \\
& B=32^{\circ} 17^{\prime} 10^{\prime \prime} \\
& \hline A+B=57^{\circ} \\
& \hline 60^{\prime} \\
& \hline 9^{\prime} \\
& \hline 60^{\prime \prime}
\end{aligned}=58^{\circ} .
$$

$$
\begin{aligned}
& \begin{aligned}
A & =35^{\circ} 52^{\prime} \\
B & =20^{\circ} 22^{\prime} \\
A-B & =15^{\circ} 30^{\circ}
\end{aligned} \\
& A=47^{\circ} \quad 75^{\circ} \quad 15^{\circ} \\
& B \\
& \text { Find } B \\
& \begin{array}{l}
A+B=90 \\
B=90^{\circ}-A \\
\quad 90^{\circ} \begin{aligned}
\\
-\quad 37^{\circ} 15^{\prime} \Rightarrow-39^{\circ} 60^{\prime} \\
\hline 52^{\circ} 45^{\prime}
\end{aligned}
\end{array}
\end{aligned}
$$

Jan 24-11:41 AM
find the missing angle

$$
\begin{aligned}
& A+B=38^{\circ} 22^{\prime} 35^{\prime \prime} \\
& +\frac{27^{\circ} 15^{\prime} 45^{\prime \prime}}{65^{\circ} 37^{\prime} 80^{\prime \prime}} \begin{array}{r}
65^{\circ} \frac{1}{\prime} 38^{\prime} 20^{\prime \prime}
\end{array} \\
& C=180^{\circ}-(A+B) \\
& C \rightarrow \begin{array}{lll}
114^{\circ} & 21^{\prime} & 40^{\prime \prime}
\end{array}
\end{aligned}
$$

Intro to Trig Equation
Solve $\sin x=\frac{1}{2}$ on $[0,2 \pi)$

Ref. angle $\rightarrow 30^{\circ}=\frac{\pi}{6}$
QI $\rightarrow x=\frac{\pi}{6}$
QI $\rightarrow x=\pi-$ RA. $=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}$
Solve $\sin x=\frac{1}{2}$

$$
[0,2 \pi)
$$

Sol Set

$$
\left\{\frac{\pi}{6}, \frac{5 \pi}{6}\right\}
$$

Jan 24-11:55 AM

Solve

$$
\begin{aligned}
2 \cos x+\sqrt{3} & =0 \\
2 \cos x & =-\sqrt{3} \\
\cos x & =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

over $[0,2 \pi)$
WII, QIII

Ref. angle $\rightarrow 30^{\circ}=\frac{\pi}{6}$
QI I $\rightarrow x=\pi-$ RA. $=\pi-\frac{\pi}{6}=\frac{5 \pi}{6}=150^{\circ}$
QIII $\rightarrow x=\pi+$ RA. $=\pi+\frac{\pi}{6} F \frac{7 \pi}{6}=210^{\circ}$

Solve

$$
\tan x-1=0
$$

over $[0,2 \pi)$

$$
\tan x=1
$$

Ref.angle $\frac{\pi}{4}$
QI, QIIL

QI $\quad x=$ R.A. $=\frac{\pi}{4}$
QIII $x=\pi+$ R.A. $=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}$

$$
\left\{\frac{\pi}{4}, \frac{5 \pi}{4}\right\}
$$

Jan 24-12:08 PM

